Package: mclogit (via r-universe)

November 5, 2024

Type Package

Title Multinomial Logit Models, with or without Random Effects or
Overdispersion

Version 0.9.8

Date 2024-10-04

Author Martin EIff

Maintainer Martin EIff <mclogit@elff.eu>

Description Provides estimators for multinomial logit models in their
conditional logit and baseline logit variants, with or without
random effects, with or without overdispersion. Random effects
models are estimated using the PQL technique (based on a
Laplace approximation) or the MQL technique (based on a
Solomon-Cox approximation). Estimates should be treated with
caution if the group sizes are small.

License GPL-2

Depends stats, Matrix

Imports MASS, memisc, methods, nlme
Suggests nnet, ucminf, knitr, rmarkdown
LazyLoad Yes

VignetteBuilder knitr

URL http://melff.github.io/mclogit/,https://github.com/melff/mclogit/

BugReports https://github.com/melff/mclogit/issues
Encoding UTF-8

RoxygenNote 7.3.1

Repository https://melff.r-universe.dev

RemoteUrl https://github.com/melff/mclogit

RemoteRef HEAD

RemoteSha eb416d4a96cc80c1{4e23cf04b6964542b4408d6

http://melff.github.io/mclogit/
https://github.com/melff/mclogit/
https://github.com/melff/mclogit/issues

2 dispersion
Contents
dispersion e e e e 2
electors e e e 3
getSummary-methods L. e 4
mblogit e 6
melogit . ..o 9
mclogit.control 13
mclogitfit 15
predict L e e e e 16
TEDASE e e e e e e e e 18
simulate.mclogit. L e e 18
Transport e e e 20
Index 21
dispersion Overdispersion in Multinomial Logit Models
Description
The function dispersion() extracts the dispersion parameter from a multinomial logit model or
computes a dispersion parameter estimate based on a given method. This dispersion parameter can
be attached to a model using update(). It can also given as an argument to summary ().
Usage
dispersion(object,method, ...)
S3 method for class 'mclogit'
dispersion(object,method=NULL,groups=NULL, ...)
Arguments
object an object that inherits class "mclogit”. When passed to dispersion(), it
should be the result of a call of mclogit() of mblogit(), without random ef-
fects.
method a character string, either "Afroz"”, "Fletcher"”, "Pearson”, or "Deviance”,

that specifies the estimator of the dispersion; or NULL, in which case the default
estimator, "Afroz"” is used. The estimators are discussed in Afroz et al. (2019).

groups an optional formula that specifies groups of observations relevant for the estima-

tion of overdispersion. Prediced probabilities should be constant within groups,
otherwise a warning is generated since the overdispersion estimate may be im-
precise.

other arguments, ignored or passed to other methods.

electors 3

References

Afroz, Farzana, Matt Parry, and David Fletcher. (2020). "Estimating Overdispersion in Sparse
Multinomial Data." Biometrics 76(3): 834-842. doi:10.1111/biom.13194.

Examples

library(MASS) # For 'housing' data

Note that with a factor response and frequency weighted data,

Overdispersion will be overestimated:

house.mblogit <- mblogit(Sat ~ Infl + Type + Cont, weights = Freq,
data = housing)

dispersion(house.mblogit,method="Afroz")
dispersion(house.mblogit,method="Deviance")

summary (house.mblogit)

phi.Afroz <- dispersion(house.mblogit,method="Afroz")
summary (house.mblogit, dispersion=phi.Afroz)

summary (update (house.mblogit, dispersion="Afroz"))

In order to be able to estimate overdispersion accurately,

data like the above (which usually comes from applying

'as.data.frame' to a contingency table) the model has to be

fitted with the optional argument 'from.table=TRUE':

house.mblogit.corrected <- mblogit(Sat ~ Infl + Type + Cont, weights = Freq,
data = housing, from.table=TRUE,
dispersion="Afroz")

Now the estimated dispersion parameter is no longer larger than 20,

but just bit over 1.0.

summary (house.mblogit.corrected)

electors Class, Party Position, and Electoral Choice

Description

This is an artificial data set on electoral choice as influenced by class and party positions.

Usage

data(electors)

https://doi.org/10.1111/biom.13194

4 getSummary-methods

Format

A data frame containing the following variables:

class class position of voters

party party that runs for election

Freq freqency by which each party list is chosen by members of each class
time time variable, runs from zero to one

econ.left economic-policy "leftness" of each party

welfare emphasis of welfare expansion of each party

auth position on authoritarian issues

Examples

data(electors)

summary (mclogit(
cbind(Freq,interaction(time,class))~econ.left+welfare+auth,
data=electors))

summary (mclogit(
cbind(Freq, interaction(time,class))~econ.left/class+welfare/class+auth/class,
data=electors))

Not run: # This takes a bit longer.

summary (mclogit(
cbind(Freq,interaction(time,class))~econ.left/class+welfare/class+auth/class,
random=~1|party.time,
data=within(electors,party.time<-interaction(party,time))))

summary (mclogit(
cbind(Freq, interaction(time,class))~econ.left/(class*time)+welfare/class+auth/class,
random=~1|party.time,
data=within(electors,{
party.time <-interaction(party,time)
econ.left.sq <- (econ.left-mean(econ.left))*2

DN

End(Not run)

getSummary-methods ‘getSummary Methods

Description

getSummary methods for use by mtable

getSummary-methods 5

Usage
S3 method for class 'mblogit'
getSummary(obj,
alpha=.05,
o)
S3 method for class 'mclogit'
getSummary (obj,
alpha=.05,
rearrange=NULL,
o)
S3 method for class 'mmblogit'
getSummary (obj,
alpha=.05,
S
S3 method for class 'mmclogit'’
getSummary (obj,
alpha=.05,
rearrange=NULL,
)
Arguments
obj an object returned by mblogit or mclogit
alpha level of the confidence intervals; their coverage should be 1-alpha/2
rearrange an optional named list of character vectors. Each element of the list designates

a column in the table of estimates, and each element of a character vector refers
to a coefficient. Names of list elements become column heads and names of the
character vector elements become coefficient labels.

further arguments; ignored.

Examples

Not run:
summary(classd.model <- mclogit(cbind(Freq,choice.set)~
(econdiml.sg+nonmatdiml.sg+nonmatdim2.sq)+
(econdiml+nonmatdiml+nonmatdim2)+
(econdiml+nonmatdiml+nonmatdim2):classd,
data=mvoteint.classd, random=~1|mvoteint/eb,
subset=classd!="Farmers"))
myGetSummary.classd <- function(x)getSummary.mclogit(x,rearrange=1ist(
"Econ. Left/Right"=c(
"Squared effect”="econdiml.sq",
"Linear effect”="econdim1”,
" x Intermediate/Manual worker”="econdiml:classdIntermediate”,
x Service class/Manual worker"”="econdiml:classdService class”,
x Self-employed/Manual worker"="econdim1:classdSelf-employed”

”

"

)’
"Lib./Auth."=c(

n_n

"Squared effect”="nonmatdiml.sq",
"Linear effect”="nonmatdiml1",

" x Intermediate/Manual worker
x Service class/Manual worker
x Self-employed/Manual worker

n_n
” n_n

"

),
"Mod. /Trad."=c(
"Squared effect”="nonmatdim2.sq",
"Linear effect”="nonmatdim2",
" x Intermediate/Manual worker
x Service class/Manual worker
x Self-employed/Manual worker

n_n

n_n
” n_n

"

)

n_n

)

library(memisc)
mtable(classd.model, getSummary=myGetSummary.classd)
Output would look like so:

mblogit

nonmatdiml:classdIntermediate”,
nonmatdiml:classdService class”,
nonmatdiml:classdSelf-employed”

nonmatdim2:classdIntermediate”,
nonmatdim2:classdService class”,
nonmatdim2:classdSelf-employed”

#
Econ. Left/Right Lib./Auth. Mod. /Trad.
__
Squared effect 0.030 0.008 -0.129%*
(0.081) (0.041) (0.047)
Linear effect -0.583%%% -0.038 0.137%%
(0.063) (0.041) (0.045)
x Intermediate/Manual worker 0.632%x% -0.029 -0.015
(0.026) (0.020) (0.019)
x Service class/Manual worker 1.158%*x* 0.084*x 0.000
(0.040) (0.032) (0.030)
x Self-employed/Manual worker 1.140%%% Q.363%*%* 0.112%x%
(0.035) (0.027) (0.026)
Var(mvoteint) 1.080*%*
(0.000)
Var(mvoteint x eb) 0.118%x%
(0.000)
__
Dispersion 1.561
Deviance 15007.0
N 173445
#
End(Not run)
mblogit Baseline-Category Logit Models for Categorical and Multinomial Re-

sponses

Description

The function mblogit fits baseline-category logit models for categorical and multinomial count

responses with fixed alternatives.

mblogit 7

Usage

mblogit(
formula,
data = parent.frame(),
random = NULL,
catCov = c("free"”, "diagonal”, "single"),
subset,
weights = NULL,
offset = NULL,
na.action = getOption("na.action”),

model = TRUE,
x = FALSE,
y = TRUE,

contrasts = NULL,

method = NULL,

estimator = c("ML", "REML"),

dispersion = FALSE,

start = NULL,

from.table = FALSE,

groups = NULL,

control = if (length(random)) mmclogit.control(...) else mclogit.control(...),

)
Arguments

formula the model formula. The response must be a factor or a matrix of counts.

data an optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which glmis called.

random an optional formula or list of formulas that specify the random-effects structure
or NULL

catCov a character string that specifies optional restrictions on the covariances of ran-
dom effects between the logit equations. "free" means no restrictions, "diago-
nal" means that random effects pertinent to different categories are uncorrelated,
while "single" means that the random effect variances pertinent to all categories
are identical.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Should be NULL
OI' @ numeric vector.

offset an optional model offset.

na.action a function which indicates what should happen when the data contain NAs. The

default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

model

X’y

contrasts

method

estimator

dispersion

start

from. table

groups

control

Details

mblogit

a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

logical values indicating whether the response vector and model matrix used in
the fitting process should be returned as components of the returned value.

an optional list. See the contrasts.arg of model.matrix.default.

NULL or a character string, either "PQL" or "MQL", specifies the type of the
quasilikelihood approximation to be used if a random-effects model is to be
estimated.

a character string; either "ML" or "REML", specifies which estimator is to be
used/approximated.

a logical value or a character string; whether and how a dispersion parameter
should be estimated. For details see dispersion.

an optional matrix of starting values (with as many rows as logit equations).
If the model has random effects, the matrix should have a "VarCov" attribute
wtih starting values for the random effects (co-)variances. If the random effects
model is estimated with the "PQL" method, the starting values matrix should
also have a "random.effects" attribute, which should have the same structure as
the "random.effects" component of an object returned by mblogit().

a logical value; do the data represent a contingency table, e.g. were created by
applying as.data.frame() a the result of table() or xtabs(). This relevant
only if the response is a factor. This argument should be set to TRUE if the data do
come from a contingency table. Correctly setting from. table=TRUE in this case,
will lead to efficiency gains in computing, but more importantly overdispersion
will correctly be computed if present.

an optional formula that specifies groups of observations relevant for the estima-
tion of overdispersion. Covariates should be constant within groups, otherwise
a warning is generated since the overdispersion estimate may be imprecise.

a list of parameters for the fitting process. See mclogit.control

arguments to be passed to mclogit.control or mmclogit.control

The function mblogit internally rearranges the data into a ’long’ format and uses mclogit.fit to
compute estimates. Nevertheless, the "user data’ are unaffected.

Value

mblogit returns an object of class "mblogit", which has almost the same structure as an object
of class "glm". The difference are the components coefficients, residuals, fitted.values,
linear.predictors, and y, which are matrices with number of columns equal to the number of
response categories minus one.

References

Agresti, Alan. 2002. Categorical Data Analysis. 2nd ed, Hoboken, NJ: Wiley. doi:10.1002/

0471249688

https://doi.org/10.1002/0471249688
https://doi.org/10.1002/0471249688

mclogit 9

Breslow, N.E. and D.G. Clayton. 1993. "Approximate Inference in Generalized Linear Mixed Mod-
els". Journal of the American Statistical Association 88 (421): 9-25. doi:10.1080/01621459.1993.10594284

See Also

The function multinom in package nnet also fits multinomial baseline-category logit models, but
has a slightly less convenient output and does not support overdispersion or random effects. How-
ever, it provides some other options. Baseline-category logit models are also supported by the
package VGAM, as well as some reduced-rank and (semi-parametric) additive generalisations. The
package mnlogit estimates logit models in a way optimized for large numbers of alternatives.

Examples
library(MASS) # For 'housing' data
library(nnet)
library(memisc)
(house.mult<- multinom(Sat ~ Infl + Type + Cont, weights = Freq,
data = housing))
(house.mblogit <- mblogit(Sat ~ Infl + Type + Cont, weights = Freq,
data = housing))
summary (house.mult)

summary (house.mblogit)

mtable(house.mblogit)

mclogit Conditional Logit Models and Mixed Conditional Logit Models

Description

mclogit fits conditional logit models and mixed conditional logit models to count data and individ-
ual choice data, where the choice set may vary across choice occasions.

Conditional logit models without random effects are fitted by Fisher-scoring/IWLS. Models with
random effects (mixed conditional logit models) are estimated via maximum likelihood with a sim-
ple Laplace aproximation (aka PQL).

Usage

mclogit(formula, data=parent.frame(), random=NULL,
subset, weights = NULL, offset=NULL, na.action = getOption("na.action”),
model = TRUE, x = FALSE, y = TRUE, contrasts=NULL,
method = NULL, estimator=c("ML","REML"),
dispersion = FALSE,

https://doi.org/10.1080/01621459.1993.10594284

10 mclogit

start=NULL,
groups = NULL,
control=if(length(random))
mmclogit.control(...)
else mclogit.control(...), ...)

S3 method for class 'mclogit'
update(object, formula., dispersion, ...)

S3 method for class 'mclogit'
summary (object, dispersion = NULL, correlation = FALSE,
symbolic.cor = FALSE, ...)

Arguments

formula a model formula: a symbolic description of the model to be fitted. The left-
hand side should result in a two-column matrix. The first column contains the
choice counts or choice indicators (alternative is chosen=1, is not chosen=0).
The second column contains unique numbers for each choice set.
The left-hand side can either take the form cbind(choice,set) or (from ver-
sion 0.9.1) choice|set
If individual-level data is used, choice sets correspond to individuals, if aggre-
gated data with choice counts are used, choice sets usually correspond to covari-
ate classes.

The right-hand of the formula contains choice predictors. It should be noted that
constants are deleted from the formula as are predictors that do not vary within
choice sets.

data an optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which glm is called.

random an optional formula or list of formulas that specify the random-effects structure
or NULL.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Should be NULL
OI @ numeric vector.

offset an optional model offset.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

start an optional numerical vector of starting values for the conditional logit parame-
ters. If the model has random effects, the vector should have a "VarCov" attribute
wtih starting values for the random effects (co-)variances. If the random effects
model is estimated with the "PQL" method, the starting values matrix should

mclogit 11

also have a "random.effects" attribute, which should have the same structure as
the "random.effects" component of an object returned by mblogit().

model a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

X, Yy logical values indicating whether the response vector and model matrix used in
the fitting process should be returned as components of the returned value.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

method NULL or a character string, either "PQL" or "MQL", specifies the type of the
quasilikelihood approximation to be used if a random-effects model is to be
estimated.

estimator a character string; either "ML" or "REML", specifies which estimator is to be
used/approximated.

dispersion a real number used as dispersion parameter; a character vector that specifies the

method to compute the dispersion; a logical value — if TRUE the default method
("Afroz") is used, if FALSE, the dispersion parameter is set to 1, that is, no
dispersion. For details see dispersion.

groups an optional formula that specifies groups of observations relevant for the estima-
tion of overdispersion. Covariates should be constant within groups, otherwise
a warning is generated since the overdispersion estimate may be imprecise.

control a list of parameters for the fitting process. See mclogit.control

arguments to be passed to mclogit.control or mmclogit.control

object an object that inherits class "mclogit”. When passed to dispersion(), it
should be the result of a call of mclogit() of mblogit(), without random ef-
fects.

formula. a changes to the model formula, see update.default and update.formula.

correlation logical; see summary . 1m.

symbolic.cor logical; see summary. 1m.

Value

mclogit returns an object of class "mclogit", which has almost the same structure as an object of
class "glm".

Note

Covariates that are constant within choice sets are automatically dropped from the model formula
specified by the formula argument of mclogit.

If the model contains random effects, these should
* either vary within choice sets (e.g. the levels of a factor that defines the choice sets should not
be nested within the levels of factor)

* or be random coefficients of covariates that vary within choice sets.

12 mclogit

In earlier versions of the package (prior to 0.6) it will lead to a failure of the model fitting algorithm
if these conditions are not satisfied. Since version 0.6 of the package, the function mclogit will
complain about such model a misspecification explicitely.

From version 0.9.7 it is possible to choose the optimization technique used for the inner iterations
of the PQL/MQL.: either n1lminb (the default), n1m, or any of the algorithms (other than "Brent" sup-
ported by optim). To choose the optimizer, use the appropriate argument for mmclogit.control

References

Agresti, Alan (2002). Categorical Data Analysis. 2nd ed, Hoboken, NJ: Wiley. doi:10.1002/
0471249688

Breslow, N.E. and D.G. Clayton (1993). "Approximate Inference in Generalized Linear Mixed
Models". Journal of the American Statistical Association 88 (421): 9-25. doi:10.1080/01621459.1993.10594284

Elff, Martin (2009). "Social Divisions, Party Positions, and Electoral Behaviour". Electoral Studies
28(2): 297-308. doi:10.1016/j.electstud.2009.02.002

McFadden, D. (1973). "Conditionial Logit Analysis of Qualitative Choice Behavior". Pp. 105-135
in P. Zarembka (ed.). Frontiers in Econometrics. New York: Wiley. https://eml.berkeley.edu/
reprints/mcfadden/zarembka.pdf

See Also

Conditional logit models are also supported by gmnl, mlogit, and survival. survival supports con-
ditional logit models for binary panel data and case-control studies. mlogit and gmnl treat condi-
tional logit models from an econometric perspective. Unlike the present package, they focus on the
random utility interpretation of discrete choice models and support generalisations of conditional
logit models, such as nested logit models, that are intended to overcome the ITA (indipendence from
irrelevant alterantives) assumption. Mixed multinomial models are also supported and estimated us-
ing simulation-based techniques. Unlike the present package, mixed or random-effects extensions
are mainly intended to fit repeated choices of the same individuals and not aggregated choices of
many individuals facing identical alternatives.

Examples

data(Transport)

summary (mclogit(
cbind(resp, suburb)~distance+cost,
data=Transport
D)

New syntactic sugar:

summary (mclogit (
resp|suburb~distance+cost,
data=Transport

)

Not run: # This takes a bit longer.
data(electors)

https://doi.org/10.1002/0471249688
https://doi.org/10.1002/0471249688
https://doi.org/10.1080/01621459.1993.10594284
https://doi.org/10.1016/j.electstud.2009.02.002
https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf
https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf

mclogit.control 13

electors <- within(electors,{
party.time <-interaction(party,time)
time.class <- interaction(time,class)

»

Time points nested within parties

summary (mclogit(
Freq|time.class~econ.left/class+welfare/class+auth/class,
random=~1|party/time,
data=electors))

Party-level random intercepts and random slopes varying over time points
summary (mclogit(
Freq|time.class~econ.left/class+welfare/class+auth/class,
random=1ist(~1|party,~econ.left+0|time),
data=electors))

End(Not run)

mclogit.control Control Parameters for the Fitting Process

Description

mclogit.control returns a list of default parameters that control the fitting process of mclogit.

Usage

mclogit.control(epsilon = 1e-08,
maxit = 25, trace=TRUE)
mmclogit.control(epsilon = 1e-08,
maxit = 25, trace=TRUE,
trace.inner=FALSE,
avoid.increase = FALSE,
break.on.increase = FALSE,
break.on.infinite = FALSE,
break.on.negative = FALSE,

inner.optimizer = "nlminb",

maxit.inner = switch(inner.optimizer,
SANN = 10000,
“Nelder-Mead™ = 500,
100),

CG.type = 1,

NM.alpha = 1,

NM.beta = 0.5

NM.gamma = 2.0,
SANN. temp = 10

’

14 mclogit.control

SANN. tmax = 10,

grtol = 1e-6,

xtol = le-8,

maxeval = 100,

gradstep = c(le-6, 1e-8),

use.gradient = c("analytic”,"numeric"))

Arguments
epsilon positive convergence tolerance e; the iterations converge when |dev—deveq|/(|dev|+
0.1) <e.
maxit integer giving the maximal number of IWLS or PQL iterations.
trace logical indicating if output should be produced for each iteration.
trace.inner logical; indicating if output should be produced for each inner iteration of the
PQL method.

avoid.increase logical; should an increase of the deviance be avoided by step truncation?
break.on.increase
logical; should an increase of the deviance be avoided by stopping the algo-
rithm?
break.on.infinite
logical; should an infinite deviance stop the algorithm instead of leading to step
truncation?
break.on.negative
logical; should a negative deviance stop the algorithm?
inner.optimizer
a character string, one of "nlminb", "nlm", "ucminf", "Nelder-Mead", "BFGS",
"CG", "L-BFGS-B", "SANN". See nlminb, n1lm, ucminf, or optim.

maxit.inner integer; the maximum number of inner iterations

CG. type integer; the type argument passed to optim if "CG" is selected as inner opti-
mizer.

NM. alpha integer; the alpha argument passed to optim if "Nelder-Mead" is selected as
inner optimizer.

NM.beta integer; the beta argument passed to optim if "Nelder-Mead" is selected as
inner optimizer.

NM. gamma integer; the gamma argument passed to optim if "Nelder-Mead" is selected as
inner optimizer.

SANN. temp integer; the temp argument passed to optim if "SANN" is selected as inner op-
timizer.

SANN. tmax integer; the tmax argument passed to optim if "SANN" is selected as inner op-
timizer.

grtol numeric; the grtol control parameter for ucminf if "ucminf" is selected as inner
optimizer.

xtol numeric; the xtol control parameter for ucminf if "ucminf" is selected as inner

optimizer.

mclogit.fit

maxeval

gradstep

use.gradient

Value

A list.

15

integer; the maxeval control parameter for ucminf if "ucminf" is selected as
inner optimizer.

anumeric vector of length; the gradstep control parameter for ucminf if "ucminf"
is selected as inner optimizer.

a character string; whether the gradient should be computed analytically or
whether a finite-difference approximation should be used.

mclogit.fit

Internal functions used for model fit.

Description

These functions are exported and documented for use by other packages. They are not intended for

end users.

Usage

mclogit.fit(y, s, w, X,
dispersion=FALSE,

start = NULL, offset = NULL,

control = mclogit.control(),
groups=NULL)

mmclogit.fitPQLMQL(y, s, w, X, Z, d,

Arguments

y

w
X

dispersion

groups

start = NULL,

start.Phi = NULL,

start.b = NULL,

offset = NULL, method=c("PQL","MQL"),
estimator = c("ML","REML"),

control = mmclogit.control())

a response vector. Should be binary.

a vector identifying individuals or covariate strata
a vector with observation weights.

a model matrix; required.

a logical value or a character string; whether and how a dispersion parameter
should be estimated. For details see dispersion.

a vector that identifies the groups relevant for the estimation of the dispersion
parameter.

16

start

offset

start.Phi
start.b
method

estimator

control

Value

predict

the random effects design matrix.

dimension of random effects. Typically $d=1$ for random intercepts only, $d>1$
for models with random intercepts.

an optional numerical vector of starting values for the coefficients.

an optional model offset. Currently only supported for models without random
effects.

an optional matrix of strarting values for the (co-)variance parameters.
an optional list of vectors with starting values for the random effects.

a character string, either "PQL" or "MQL", specifies the type of the quasilikeli-
hood approximation.

a character string; either "ML" or "REML", specifies which estimator is to be
used/approximated.

a list of parameters for the fitting process. See mclogit.control

A list with components describing the fitted model.

predict

Predicting responses or linear parts of the baseline-category and con-
ditional logit models

Description

The predict() methods allow to obtain within-sample and out-of-sample predictions from models
fitted with mclogit() and mblogit().

For models with random effecs fitted using the PQL-method, it is possible to obtain responses that
are conditional on the reconstructed random effects.

Usage
S3 method for class 'mblogit'
predict(object, newdata=NULL,type=c("link","response”),se.fit=FALSE, ...)
S3 method for class 'mclogit'
predict(object, newdata=NULL,type=c("link"”,"response”),se.fit=FALSE, ...)

S3 method for class 'mmblogit'
predict(object, newdata=NULL,type=c("link"”,"response”),se.fit=FALSE,

conditional=TRUE, ...)

S3 method for class 'mmclogit'’
predict(object, newdata=NULL,type=c("link"”,"response”),se.fit=FALSE,

conditional=TRUE, ...)

predict 17
Arguments
object an object in class "mblogit", "mmblogit", "mclogit", or "mmclogit"
newdata an optional data frame with new data
type a character string specifying the kind of prediction
se.fit a logical value; whether predictions should be accompanied with standard errors
conditional a logical value; whether predictions should be made conditional on the random
effects (or whether they are set to zero, i.e. their expectation). This argument
is consequential only if the "mmblogit" or "mmclogit" object was created with
method="PQL".
other arguments, ignored.
Value

The predict methods return either a matrix (unless called with se.fit=TRUE) or a list with two
matrix-valued elements "fit" and "se.fit".

Examples

library(MASS)

(house.mblogit <- mblogit(Sat ~ Infl + Type + Cont,

data = housing,
weights=Freq))

head(pred.house.mblogit <- predict(house.mblogit))
str(pred.house.mblogit <- predict(house.mblogit,se=TRUE))

head(pred.house.mblogit <- predict(house.mblogit,

type="response"))

str(pred.house.mblogit <- predict(house.mblogit,se=TRUE,

type="response"))

This takes a bit longer.

data(electors)

(mcre <- mclogit(
cbind(Freq,interaction(time,class))~econ.left/class+welfare/class+auth/class,
random=~1|party.time,
data=within(electors,party.time<-interaction(party,time))))

str(predict(mcre))
str(predict(mcre, type="response”))

str(predict(mcre,se.fit=TRUE))
str(predict(mcre, type="response"”,se.fit=TRUE))

18 simulate.mclogit

rebase Change baseline category of multinomial logit or similar model

Description

‘rebase‘ returns an model object that is equivalent to the one given as argument but differs in pa-
rameterization

Usage

rebase(object, to, ...)

S3 method for class 'mblogit'

rebase(object, to, ...)
Arguments
object a statistical model object
to usually, a string; the baseline category

other arguments, currently ignored

simulate.mclogit Simulating responses from baseline-category and conditional logit
models

Description
The simulate() methods allow to simulate responses from models fitted with mclogit() and
mblogit(). Currently only models without random effects are supported for this.

Usage

S3 method for class 'mblogit'

simulate(object, nsim = 1, seed = NULL, ...)
S3 method for class 'mclogit'
simulate(object, nsim = 1, seed = NULL, ...)

These methods are currently just 'stubs', causing an error
message stating that simulation from models with random

effects are not supported yet

S3 method for class 'mmblogit'

simulate(object, nsim = 1, seed = NULL, ...)

S3 method for class 'mmclogit'

simulate(object, nsim = 1, seed = NULL, ...)

simulate.mclogit 19

Arguments
object an object from the relevant class
nsim a number, specifying the number of simulated responses for each observation.
seed an object specifying if and how the random number generator should be initial-
ized (’seeded’). The interpetation of this argument follows the default method,
see link[stats]{simulate}
other arguments, ignored.
Value

The result of the simulate method for objects created by mclogit is a data frame with one variable
for each requested simulation run (their number is given by the nsim= argument). The contents
of the columns are counts (or zero-one values), with group-wise multinomial distribution (within
choice sets) just like it is assumed for the original response.

The shape of the result of the simulate method for objects created by mblogit is also a data frame.
The variables within the data frame have a mode or shape that corresponds to the response to which
the model was fitted. If the response is a matrix of counts, then the variables in the data frame
are also matrices of counts. If the response is a factor and mblogit was called with an argument
from.table=FALSE, the variables in the data frame are factors with the same factor levels as the
response to which the model was fitted. If instead the function was called with from. table=TRUE,
the variables in the data frame are counts, which represent frequency weights that would result from
applying as.data. frame to a contingency table of simulated frequency counts.

Examples

library(MASS)

(house.mblogit <- mblogit(Sat ~ Infl + Type + Cont,
data = housing,
weights=Freq,
from.table=TRUE))

sm <- simulate(house.mblogit,nsim=7)

housing.long <- housing[rep(seq.int(nrow(housing)),housing$Freq),]

(housel.mblogit <- mblogit(Sat ~ Infl + Type + Cont,
data=housing.long))

sml <- simulate(housel.mblogit,nsim=7)

housing.table <- xtabs(Freq~.,data=housing)
housing.mat <- memisc::to.data.frame(housing.table)
head(housing.mat)

(housem.mblogit <- mblogit(cbind(Low,Medium,High) ~
Infl + Type + Cont,
data=housing.mat))
smm <- simulate(housem.mblogit,nsim=7)

str(sm)
str(sml)
str(smm)

20 Transport

head(smm[[1]1)

Transport Choice of Means of Transport

Description

This is an artificial data set on choice of means of transport based on cost and walking distance.

Usage

data(Transport)

Format

A data frame containing the following variables:

transport means of transportation that can be chosen.
suburb identifying number for each suburb

distance walking distance to bus or train station

cost cost of each means of transportation

working size of working population of each suburb
prop.true true choice probabilities

resp choice frequencies of means of transportation

Index

+ datasets
electors, 3
Transport, 20

+ models
mclogit, 9

* regression
mclogit, 9

AIC.mclogit (mclogit), 9
anova.mclogit (mclogit), 9
as.data.frame, 7, 10, 19

BIC.mclogit (mclogit), 9

deviance.mclogit (mclogit), 9
dispersion, 2,8, 11,15

electors, 3

fitted.mblogit (mblogit), 6
fitted.mclogit (mclogit), 9

getSummary, 4
getSummary-methods, 4
getSummary.mblogit
(getSummary-methods), 4
getSummary.mclogit
(getSummary-methods), 4
getSummary.mmblogit
(getSummary-methods), 4
getSummary.mmclogit
(getSummary-methods), 4
glm, 8, 11

loglLik.mclogit (mclogit), 9

mblogit, 5, 6, 19

mclogit, 5,9, 19
mclogit.control, 8, 11, 13, 16
mclogit.fit, 8, 15
mmclogit.control, /12

mmclogit.control (mclogit.control), 13
mmclogit.fitPQLMQL (mclogit.fit), 15
mtable, 4

multinom, 9

na.exclude, 7, 10
na.fail, 7, 10
na.omit, 7, 10
nlm, 12, 14
nlminb, 12, 14

optim, 12, 14
options, 7, 10

predict, 16

print.mblogit (mblogit), 6
print.mclogit (mclogit), 9
print.mmblogit (mblogit), 6
print.summary.mblogit (mblogit), 6
print.summary.mclogit (mclogit), 9
print.summary.mmblogit (mblogit), 6
print.summary.mmclogit (mclogit), 9

ranef.mmclogit (mclogit), 9
rebase, 18
residuals.mclogit (mclogit), 9

simulate, /9

simulate.mblogit (simulate.mclogit), 18
simulate.mclogit, 18

simulate.mmblogit (simulate.mclogit), 18
simulate.mmclogit (simulate.mclogit), 18
summary.1lm, /1

summary.mblogit (mblogit), 6
summary.mclogit (mclogit), 9
summary.mmblogit (mblogit), 6
summary.mmclogit (mclogit), 9

Transport, 20

ucminf, 14

22

update.default, 1/
update.formula, /1
update.mclogit (mclogit), 9

vcov.mclogit (mclogit), 9

weights.mblogit (mblogit), 6
weights.mclogit (mclogit), 9

INDEX

	dispersion
	electors
	getSummary-methods
	mblogit
	mclogit
	mclogit.control
	mclogit.fit
	predict
	rebase
	simulate.mclogit
	Transport
	Index

