Title: | Generic Predictive Margins |
---|---|
Description: | Provides a function to compute predictive margins. |
Authors: | Martin Elff |
Maintainer: | Martin Elff <[email protected]> |
License: | GPL-2 |
Version: | 0.2.4.1 |
Built: | 2025-01-06 05:03:14 UTC |
Source: | https://github.com/melff/mpred |
Creates prediction intervals from a beta distribution with given mean and standard deviation. Prediction intervals stay between 0 and 1.
cibeta(mean, sd, level)
cibeta(mean, sd, level)
mean |
a scalar; the mean of the beta distribution |
sd |
a scalar; the standard deviation of the beta distribution |
level |
a scalar; the confidence level |
Creates prediction intervals from a normal distribution with given mean and standard deviation.
cinorm(mean, sd, level)
cinorm(mean, sd, level)
mean |
a scalar; the mean parameter of the normal distribution |
sd |
a scalar; the standard deviation parameter of the normal distribution |
level |
a scalar; the confidence level |
Returns a function for confidence or prediction intervals appropriate for an
fitted model object. For linear regression this will be cinorm()
, for
logistic regression (done by glm
) this will be cibeta
, etc.
get_cifunc(obj) ## S3 method for class 'lm' get_cifunc(obj) ## S3 method for class 'glm' get_cifunc(obj) ## S3 method for class 'mblogit' get_cifunc(obj) ## S3 method for class 'mclogit' get_cifunc(obj) ## S3 method for class 'clm' get_cifunc(obj) ## S3 method for class 'clmm' get_cifunc(obj)
get_cifunc(obj) ## S3 method for class 'lm' get_cifunc(obj) ## S3 method for class 'glm' get_cifunc(obj) ## S3 method for class 'mblogit' get_cifunc(obj) ## S3 method for class 'mclogit' get_cifunc(obj) ## S3 method for class 'clm' get_cifunc(obj) ## S3 method for class 'clmm' get_cifunc(obj)
obj |
an fitted model object |
Generic function to preduce predictive margins
predmarg( obj, settings, data, subset, type = NULL, groups = NULL, setup = NULL, cifunc = get_cifunc(obj), level = 0.95, parallel = FALSE, mc.cores = if (.Platform$OS.type == "windows") 1L else max.cores, ... )
predmarg( obj, settings, data, subset, type = NULL, groups = NULL, setup = NULL, cifunc = get_cifunc(obj), level = 0.95, parallel = FALSE, mc.cores = if (.Platform$OS.type == "windows") 1L else max.cores, ... )
obj |
a model object, e.g. returned by |
settings |
an optional data frame of settings for independent variables. |
data |
an optional data frame for which the predictive margins are computed. If ommited, an attempt is made to obtain the data from the model object. |
subset |
an optional logical vector that defines a subset for which a predictive margin is computed |
type |
an optional character string that specifies the type of predictions, e.g. probabilities or cumulative probabilites. For future versions only. |
groups |
a variable that defines groups for which predictive margines are computed. This variable has to have the same number of observations as the data to which the model was fitted. |
setup |
an optional expression that is evaluated for each setting, i.e. individually for each row of the settings data frame. Can be used to modify independent variables. |
cifunc |
a function to compute prediction intervals. By default it is the chosen by the function of the same name. |
level |
level of confidence intervals of predictions. |
parallel |
logical value that determines whether predictions for individual settings are computed in parallel. (Does not yet work on windows.) |
mc.cores |
number of CPU cores used for parallel processing. |
... |
optional vectors of values of independent variabls. These
further arguments, if present, are used to create a data frame of
settings, using |
The generic function predmarg
computes predictive
margins for various settings of the independent variables. It is also
possible to provide settings for independent variables that are
included in the model, but that are used in the setup
expression to transform independent variables. See the examples below.
a data frame with the following variables:
pred |
the mean prediction for the setting of the independent variables |
var.pred |
the (estimated) variance of the mean prediction |
se.pred |
the standard error of prediction, i.e. the square root of the variance of the mean prediction |
lower |
lower prediction interval computed with |
upper |
upper prediction interval computed with |
... |
the independent variables for which values are set to create the predictions are also included in the resulting data frame. |
library(magrittr) # Simple linear regression fm <- lm(weight ~ poly(height, 2), data = women) pm <-predmarg(fm, height=seq(from=58,to=72, length=10)) str(pm) plot(pred~height,data=pm, type="l") with(women, points(height,weight)) with(pm, lines(height,lower,lty=2)) with(pm, lines(height,upper,lty=2)) # Logistic regression library(carData) Chile %<>% within({ vote2 <- factor(vote,levels=c("N","Y")) vote2 <- as.integer(vote2=="Y") }) glm.Chile.1 <- glm(vote2~sex+age+income+education, data=Chile, family=binomial) summary(glm.Chile.1) pm.Chile.1.income <- predmarg(glm.Chile.1, income=seq(from=2500,to=200000,length=20)) plot(pred~income,data=pm.Chile.1.income, type="l") # Baseline category logit library(mclogit) library(MASS) mb.Chile <- mblogit(vote~statusquo, data=Chile) pm.mb.Chile <- predmarg(mb.Chile, statusquo=seq(from=-2,to=2,length=20)) str(pm.mb.Chile) library(ggplot2) (ggplot(pm.mb.Chile, aes(x=statusquo, y=pred, fill=response ) ) + geom_area()) (ggplot(pm.mb.Chile, aes(x=statusquo, y=pred, ymin=lower, ymax=upper ) ) + geom_line() +geom_ribbon(alpha=.25) + facet_grid(~response)) mb.hs <- mblogit(Sat~Infl+Type+Cont,weights=Freq, data=housing) pm.mb.hs <- predmarg(mb.hs, Infl=levels(Infl), Type=levels(Type)) dodge <- position_dodge(width=.8) (ggplot(pm.mb.hs) +facet_wrap(~Type) +geom_bar( aes(fill=response, x=Infl, y=pred), stat='identity',position=dodge,width=.8) +geom_errorbar( aes(x=Infl, ymin=lower, ymax=upper,group=response), position=dodge,width=.4)) # The following requires the most current 'mclogit' version on GitHub # and fails with the CRAN version # # Baseline category logit with random effects # # # Some artificial data # exadata <- local({ # B <- cbind(c(-.5,.3), # c(.5,-.5)) # set.seed(42) # x <- rnorm(n=60) # X <- cbind(1,x) # Eta <- X %*% B # j <- rep(1:10,6) # jf <- as.factor(j) # u1 <- rnorm(n=10,sd=.8) # u2 <- rnorm(n=10,sd=.8) # Eta <- Eta + cbind(u1[j],x*u2[j]) # expEta <- cbind(1,exp(Eta)) # sum.expEta <- rowSums(expEta) # pi <- expEta/sum.expEta # Y <- t(apply(pi,1,rmultinom,n=1,size=300)) # res <-data.frame(Y,x,j,jf) # names(res)[1:3] <- paste0("y",1:3) # res # }) # # # Baseline logit model with random intercepts and random slopes # mbrsl <- mblogit(cbind(y1,y2,y3)~x,data=exadata, # random = ~1+x|j) # summary(mbrsl) # # # Predictive margins for values of x # pm.mbrsl <- predmarg(mbrsl,x=seq(from=min(x),to=max(x),length=24)) # (ggplot(pm.mbrsl, # aes(x=x, # y=pred, # fill=response # ) # ) + geom_area()) # # # Predictive margins for the random effects # pm.mbrsl.j <- predmarg(mbrsl,j=1:10) # (ggplot(pm.mbrsl.j, # aes(x=j, # y=pred, # fill=response # ) # ) + geom_bar(position="fill",stat="identity")) # # pm.mbrsl.jx <- predmarg(mbrsl, # j=1:10, # x=seq(from=min(x),to=max(x), # length=24)) # # (ggplot(pm.mbrsl.jx, # aes(x=x, # y=pred, # fill=response # ) # ) + geom_area() # + facet_wrap(~j))
library(magrittr) # Simple linear regression fm <- lm(weight ~ poly(height, 2), data = women) pm <-predmarg(fm, height=seq(from=58,to=72, length=10)) str(pm) plot(pred~height,data=pm, type="l") with(women, points(height,weight)) with(pm, lines(height,lower,lty=2)) with(pm, lines(height,upper,lty=2)) # Logistic regression library(carData) Chile %<>% within({ vote2 <- factor(vote,levels=c("N","Y")) vote2 <- as.integer(vote2=="Y") }) glm.Chile.1 <- glm(vote2~sex+age+income+education, data=Chile, family=binomial) summary(glm.Chile.1) pm.Chile.1.income <- predmarg(glm.Chile.1, income=seq(from=2500,to=200000,length=20)) plot(pred~income,data=pm.Chile.1.income, type="l") # Baseline category logit library(mclogit) library(MASS) mb.Chile <- mblogit(vote~statusquo, data=Chile) pm.mb.Chile <- predmarg(mb.Chile, statusquo=seq(from=-2,to=2,length=20)) str(pm.mb.Chile) library(ggplot2) (ggplot(pm.mb.Chile, aes(x=statusquo, y=pred, fill=response ) ) + geom_area()) (ggplot(pm.mb.Chile, aes(x=statusquo, y=pred, ymin=lower, ymax=upper ) ) + geom_line() +geom_ribbon(alpha=.25) + facet_grid(~response)) mb.hs <- mblogit(Sat~Infl+Type+Cont,weights=Freq, data=housing) pm.mb.hs <- predmarg(mb.hs, Infl=levels(Infl), Type=levels(Type)) dodge <- position_dodge(width=.8) (ggplot(pm.mb.hs) +facet_wrap(~Type) +geom_bar( aes(fill=response, x=Infl, y=pred), stat='identity',position=dodge,width=.8) +geom_errorbar( aes(x=Infl, ymin=lower, ymax=upper,group=response), position=dodge,width=.4)) # The following requires the most current 'mclogit' version on GitHub # and fails with the CRAN version # # Baseline category logit with random effects # # # Some artificial data # exadata <- local({ # B <- cbind(c(-.5,.3), # c(.5,-.5)) # set.seed(42) # x <- rnorm(n=60) # X <- cbind(1,x) # Eta <- X %*% B # j <- rep(1:10,6) # jf <- as.factor(j) # u1 <- rnorm(n=10,sd=.8) # u2 <- rnorm(n=10,sd=.8) # Eta <- Eta + cbind(u1[j],x*u2[j]) # expEta <- cbind(1,exp(Eta)) # sum.expEta <- rowSums(expEta) # pi <- expEta/sum.expEta # Y <- t(apply(pi,1,rmultinom,n=1,size=300)) # res <-data.frame(Y,x,j,jf) # names(res)[1:3] <- paste0("y",1:3) # res # }) # # # Baseline logit model with random intercepts and random slopes # mbrsl <- mblogit(cbind(y1,y2,y3)~x,data=exadata, # random = ~1+x|j) # summary(mbrsl) # # # Predictive margins for values of x # pm.mbrsl <- predmarg(mbrsl,x=seq(from=min(x),to=max(x),length=24)) # (ggplot(pm.mbrsl, # aes(x=x, # y=pred, # fill=response # ) # ) + geom_area()) # # # Predictive margins for the random effects # pm.mbrsl.j <- predmarg(mbrsl,j=1:10) # (ggplot(pm.mbrsl.j, # aes(x=j, # y=pred, # fill=response # ) # ) + geom_bar(position="fill",stat="identity")) # # pm.mbrsl.jx <- predmarg(mbrsl, # j=1:10, # x=seq(from=min(x),to=max(x), # length=24)) # # (ggplot(pm.mbrsl.jx, # aes(x=x, # y=pred, # fill=response # ) # ) + geom_area() # + facet_wrap(~j))